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Abstract
Objectives: Mycological contamination of occupational environments can be a result of fungal spores’ dispersion in the air and 
on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal 
contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results ob-
tained in the air samples. Material and Methods: In total, 42 settings were assessed by the analysis of air and surfaces samples. 
The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste 
management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college 
canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal 
burden in the settings with a higher fungal load. Results: From the 218 sampling sites, 140 (64.2%) presented different species 
in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load 
settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted 
the setting with the highest number of different species between the air and surface. Conclusions: We observed that surfaces 
sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, cor-
roborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios.
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INTRODUCTION
Recently, concerns about human exposure to microor-
ganisms in indoor environments have been also focused 
on fungi. Interest in bioaerosol exposure has significantly 
increased because it is now recognized that exposure to 
fungal agents is associated with a wide range of adverse 

health effects with a major impact on public health [1]. 
However, despite the division of fungi in different bio-
safety levels [2], as well as the Directive 2000/54/EC [3], 
referring to the importance of the safety of workers ex-
posed to biological agents, these classifications and docu-
ments do not include toxic species that can be present in 
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In the present study we assessed fungal contamination in 
the air and in the samples of surfaces, and showed the rel-
evance of the latter in complementing the results obtained 
only via analyses of the air samples.

MATERIAL AND METHODS
Assessed settings
The sampling of several settings was performed between 
February 2010 and March 2014. The analyzed settings 
included 7 poultry farms and 7 pig farms, 3 cork indus-
tries, 3 waste management plants, 2 wastewater treat-
ment plants and 1 horse stable. Those settings were cho-
sen because they have high probability of a high fungal 
load (HFL) [20]. The sampling sites selected for each 
of the settings mentioned above were chosen based on 
the amount of time spent by the workers in those places 
during their occupational activity. In some of those set-
tings, in addition to conventional methods, also molecu-
lar methods were applied to detect fungi (Table 1). This 
approach was performed to overcome some limitations of 
the culture-based methods and whenever specific species/
strains needed to be detected.
Settings with a low fungal load (LFL) were also analyzed. 
Those included 10 hospital canteens, 8 college canteens 
and 1 maternity hospital. All these settings were assessed 
using conventional methods.

Sample collection
Conventional methodologies
Two hundred fifty-nine air samples were collected by 
the use of conventional methods. The amount of the col-
lected air samples ranged from 20 l (from pig farms) 
to 500 l (from hospital wards). The air samples were 
collected by means of the impaction method with a flow 
rate of 140 l/min onto malt extract agar (MEA) supple-
mented with chloramphenicol (0.05%), using the Mil-
lipore Air Tester (MerckMillipore, USA). The samplers 
were placed at a height of 0.6–1.5 m above the floor, 

several occupational settings [4]. Additionally, there is no 
classification that would consider, on the one hand, fungal 
ability to disseminate and, on the other, the principal in-
take routes from their spores and metabolites taking into 
account each occupational setting.
Based on their small size and a large number, fungal 
spores are classified as bioaerosols. They are always pres-
ent in the atmosphere and their concentration changes 
depending on environmental conditions. Production and 
spore release varies drastically from species to species, in-
fluencing its dissemination in the air/surfaces [5].
Aspergillus and Penicillium spores may remain indoors for 
long periods of time, while Stachybotrys spores diminish 
their concentration/viability soon after being produced, 
conditioning interpretation of the results of air samples’ 
cultures [6]. The type of sporulation and spore charac-
teristics (size, density, colony structure and roughness) 
must also be considered when analyzing fungal con-
tamination of air. Importantly, additional environmental 
characteristics related to the surfaces, including surface 
vibrations, smoothness and a role as a substrate [7] may 
also influence fungal contamination. Cultures in the air 
samples are usually the only parameters used to assess 
indoor fungal contamination [8]. According to several 
authors [9–11], surfaces analysis complements microbio-
logical characterization of the air and is used in order 
to identify contamination sources. It may also be used 
to evaluate efficacy of surface cleaning and disinfection 
procedures.
The number of studies where fungal contamination in 
workplaces has been characterized both in the air and 
in the surface samples is very limited [12–19]. In fact, in 
most of the studies on environmental fungal assessment, 
the results have been achieved only by air sampling. Be-
cause mycological contamination can be a result of fungal 
spores’ dispersion in the air and on the surfaces, it is very 
important to assess it and evaluate a specific environment 
based on the results of both types of the samples.
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phosphate-buffered saline with 0.05% Triton X-100, and 
the collection liquid was subsequently used for DNA ex-
traction using the ZR Fungal/Bacterial DNA MiniPrep 
Kit (Zymo Research, USA), according to the manufac-
turer’s instructions.

Sample preparation and analysis
Conventional methodologies
All the collected samples were incubated at 27°C 
for 5–7 days. After laboratory processing and incubation 
of the collected samples, quantitative (colony-forming 
units – CFU/m3 and CFU/m2) and qualitative results were 
obtained, with identification of the isolated fungal spe-
cies. For species identification, microscopic mounts were 
performed using tease mount or Scotch tape mount and 
lactophenol cotton blue mount procedures. Morphologi-
cal Identification was achieved through macro and micro-
scopic characteristics as noted by de Hoog et al. [22].

approximately at the breathing zone level, and as close 
as possible to the worker during a normal working day. 
An outdoor sample was also collected to be used as a ref-
erence. Samples of the surfaces (231 samples) were col-
lected by swabbing the surfaces of the same indoor sites, 
using a 10×10 cm2 stencil disinfected with 70% alcohol 
solution between samples according to the International 
Standard ISO 18593 (2004) [21]. The obtained swabs were 
then streaked onto MEA.

Molecular methodologies
Molecular tools were applied to detect fungal presence 
in 44 samples from the settings with higher fungal loads. 
The samples collected using both conventional and mo-
lecular methodologies are indicated in Table 1. The air 
samples of 250 l were collected using the impinger Coriolis 
μ air sampler (Bertin Technologies, USA), at 300 l/min air-
flow rate. The samples were collected into 10 ml of sterile 

Table 1. Collected samples and detected fungal species

Setting
Conventional methods Molecular biology

Fungal species (molecular biology)air samples 
[n]

surface samples 
[n]

air samples 
[n]

Poultry farms [34] 28 20 18 A. flavus complex (toxigenic strains)
A. fumigatus complex
Stachybotrys chartarum

Pig farms [17] 56 48 – –
Wastewater treatment 

plant (WWTP) [37]
12 12 11 A. flavus complex (toxigenic strains)

A. fumigatus complex
Stachybotrys chartarum

Waste treatment plant (WTP) [18] 22 22 21 A. flavus complex (toxigenic strains)
A. fumigatus complex
Stachybotrys chartarum

Cork industries 13 13 12 A. fumigatus complex
Penicillium glabrum

Horse stable 6 3 – –
Hospital canteen 50 41 – –
College canteens 29 29 – –
Maternity hospital 43 43 – –
Total 259 231 44
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RESULTS
The samples were collected from 133 (61%) sampling 
sites with a HFL and from 85 (39%) locations with a LFL, 
from a total of 218 sampling sites (Table 3). Of the 218 ob-
served sites, 140 (64.2%) presented different species in 
surfaces when compared with the ones identified in the air 
(Table 3). One hundred and seven out of the 140 sampling 
sites (76.4%) that presented different species were from 
the group of HFL.
Figure 1 shows distribution of the sampling sites with HFL 
and LFL, namely the pig farms (36.1%), waste treat-
ment plant (WTP) (23.3%), wastewater treatment 
plant (WWTP) (13.5%), poultry farms (15%), cork indus-
tries (9.8%), horse stable (2.3%), maternity hospital (38.8%), 
college canteens (31.8%) and hospital canteens (29.4%).
In the HFL settings, a positive association was detected 
between the presence of different species in the air and 
surfaces (Chi2 test, Chi2

1 = 32.197, p = 0.000 and associa-
tion coefficient F = – 0.384, p = 0.000).

Molecular methodologies
Five milliliters of the collection liquid were centrifuged 
at 2500×g for 10 min, supernatant was removed and DNA 
was then extracted using the ZR Fungal/Bacterial DNA 
MiniPrep Kit (Zymo Research, USA), according to 
the manufacturer’s recommendations.
Molecular identification of different species/strains (Ta-
ble 1) was achieved by the real time polymerase chain re-
action (RT-PCR) using the Rotor-Gene 6000 qPCR Detec-
tion System (Corbett, Germany). Reactions included 1×iQ 
Supermix (Bio-Rad), 0.5 μM of each primer (Table 2), 
and 0.375 μM of TaqMan probe in a total volume of 20 μl. 
Amplification followed a 3-step PCR: 40 cycles with dena-
turation at 95°C for 30 s, annealing at 52°C for 30 s, and 
extension at 72°C for 30 s. A non-template control was used 
in every PCR reaction. As positive controls for the spe-
cies, DNA samples were obtained from reference strains 
from the Mycology Laboratory from the National Health 
Institute of Health Doutor Ricardo Jorge (INSA).

Table 2. Sequence of primers and TaqMan probes used for the real time polymerase chain reaction (PCR)

Targeted fungal species and complexes Sequence
P. glabrum complex

primer forward 5’-CATTACTGAGTGAGGGCCCTCT-3’
primer reverse 5’-CGTGAGGCGGGAGCA-3’
probe 5’-CCAACCTCCCACCCGTG-3’

A. flavus complex
primer forward 5’-GTCCAAGCAACAGGCCAAGT-3’
primer reverse 5’-TCGTGCATGTTGGTGATGGT-3’
probe 5’-TGTCTTGATCGGCGCCCG-3’

A. fumigatus complex
primer forward 5’-CGCGTCCGGTCCTCG-3’
primer reverse 5’-CGTGAGGCGGGAGCA-3’
probe 5’-CCAACCTCCCACCCGTG-3’

S. chartarum
primer forward 5’-GTTGCTTCGGCGGGAAC-3’
primer reverse 5’-TTTGCGTTTGCCACTCAGAG-3’
probe 5’-CTGCGCCCGGATCCAGGC-3’
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Statistically significant differences were found in the num-
ber of different species between the air and surface sam-
ples among the sample sites with HFL (Kruskal-Wallis 
test, Chi2

kw(5) = 11.403, p = 0.044). The multiple com-
parisons of the Kruskal-Wallis test detected significant 
differences between pig farms (p = 0.027), poultry farms 
(p = 0.033) and WWTP (p = 0.012) with cork industries 
sampling sites, with the first ones showing higher values.
The setting with the major difference in the number of 
species found between the air and surface was the WWTP.
In the HFL settings 55 species/genera were found only 
in the samples of surfaces. In the assessed sampling sites, 

Table 3. Comparison between fungal assessment performed using conventional and molecular methods

Setting Fungal species 
(molecular biology)

Conventional methods (species level) Molecular biology
air samples 

[n]
surface samples 

[n]
air samples 

[n]
Poultry farms A. flavus complex 

(toxigenic strains)
7 4 4

in 2 samples wasn’t found by 
conventional methods

A. fumigatus complex 1 1
different sample from air

8
in 7 samples wasn’t found by 

conventional methods
S. chartarum 0 0 0

Wastewater treatment 
plant (WWTP)

A. flavus complex 
(toxigenic strains)

0 0 0

A. fumigatus complex 1 3
different samples from air

7
in 6 samples wasn’t found by 

conventional methods
S. chartarum 0 0 0

Waste management A. flavus complex 
(toxigenic strains)

0 0 0

A. fumigatus complex 10 12
2 different samples from air

15
in 1 sample wasn’t found by 

conventional methods
S. chartarum 0 0 0

Cork industries A. fumigatus complex 1 3
2 different samples from air

0

P. glabrum complex 2 2
1 different sample from air

10
in 6 samples wasn’t found by 

conventional methods
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wastewater
treatment

plant
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treatment
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Fig. 1. Sampling sites with a high and a low fungal load
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Analysis of the surface samples, in addition to the air sam-
ples, was an important way to optimize sensitivity of sur-
veillance in the areas that are presumed to have low con-
tamination [29] such as hospital environment [14,29,30]. 
Nevertheless, this technique is not broadly applied, mainly 
in the HFL settings. This fact limits or even prevents data 
comparison between the settings. It’s important to point 
out that our main objective of collecting samples, if there 
was a suspicion of fungal contamination, was to detect, 
quantify and identify any fungi that might be present [31]. 
However, in most of the studies where environmental 
sampling is achieved only through air sampling, data re-
garding fungal burden are probably underestimated.
The percentage of sampling sites presenting different species 
in the surfaces than the ones identified in the air (64.2%), 
corroborates importance of surface analysis to complement 
mycological air characterization [9,12–15,32]. Fungal bur-
den differences both in the air and surfaces could be ex-
plained by differences in fungal spores dispersion, which 
varies according to the fungal characteristics and environ-
mental variables [7,9,33,34]. In addition, some species with 
toxic potential (belonging to A. fumigatus complex, A. versi-
color complex and A. flavus complex) were isolated only in 
the surfaces from the HFL settings, reinforcing the need to 
assess fungal species present on the surfaces. In the present 
study, we only compared differences between the air and 
surfaces in terms of the species level; we did not perform 
a complete molecular assessment since we applied the tools 
mentioned above only for specific species/strains targeting. 
Therefore, we believe that with a broader molecular as-
sessment concerning 2 different sources (air and surfaces), 
the differences would be higher.
Although in the HFL settings the surface sampling was 
not widely applied, a positive association in these occupa-
tional settings was found between different fungal species 
present in the air and on the surfaces. Several constraints 
may explain such results, and some of them are in line 
with conventional methods limitations, namely growth 

the most frequently found genera/species were: Clad-
osporium sp. (10%), Penicillium sp. (8.2%), A. fumigatus 
complex (9.1%), A. versicolor complex (7.7%) and A. fla-
vus complex (5.9%).
Regarding the surfaces samples from the LFL scenar-
ios, 22 different species/genera were identified only in 
the samples of surfaces, with Penicillium sp. (13.5%), 
Chrysonilia sp. and Chrysosporium sp. (11.5%) being 
the most frequently found species.
In the samples that were subjected to both conventional and 
molecular biology analyses, it was possible to amplify the spe-
cies that were not detected in the cultures by quantitative 
PCR (qPCR) (molecular analysis) sequences. A reverse situ-
ation was observed in the cork industry, where A. fumigatus 
complex was not detected using molecular methods and it 
was detected by means of cultural methods (Table 3).

DISCUSSION
Significant fungal exposure occurs in agricultural and in-
dustrial industries and may cause occupational respiratory 
diseases [23]. Fungi can affect human health in a variety of 
ways resulting in such health outcomes as: infections, al-
lergic reactions (sensitization and immune overreaction), 
irritations and toxic reactions [24,25].
The lowest observed effect level of 100 000 spores/m3 for 
non-pathogenic and non-mycotoxin producing fungal spe-
cies has been proposed in a document with fungal criteria 
contamination levels based on inflammatory respiratory 
effects [26]. Several organizations have already proposed 
guidelines for fungi in indoor environments. However, 
the applied criteria have been suggested based on problems 
of indoor fungi assessment and they do not take health 
effects into consideration [27,28]. Additionally, none of 
the proposed guidelines mentioned surface fungal assess-
ment. As we observed in some of the analyzed settings 
in this study, surfaces showed higher diversity in terms of 
the number of fungal species detected, as well as a higher 
fungal load, when compared with the air samples.
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since both methodologies were not able to identify/detect 
species/strains in one setting (A. flavus complex identi-
fication in surfaces samples from some poultry farms in 
comparison with air samples and A. fumigatus complex 
detection in cork industry in comparison with data from 
conventional methods). It is also important to point out 
that in the LFL it was possible to identify different species 
in the surface samples from the ones found in the air sam-
ples (in 23.6% of the sampling sites), corroborating impor-
tance of application of this resource due to the patients 
susceptibility (maternity hospital and hospital canteens as-
sessed) and also due to final products safety criteria (food 
products from hospitals and college canteens assessed).

CONCLUSIONS
In this study, fungal contamination from several settings 
was assessed based on the air and surface sampling, prov-
ing the relevance of analysis of the latter samples in com-
plementing the results obtained by air sampling. Addition-
ally, we observed that samples of surfaces and molecular 
tools showed the same efficacy in the HFL settings, cor-
roborating the fact that application of surfaces sampling 
is crucial not only in hospital wards but also in other oc-
cupational scenarios with similar fungal loads.
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